
Intro

Deep Learning with Keras : : CHEAT SHEET
Keras is a high-level neural networks API
developed with a focus on enabling fast
experimentation. It supports multiple back-
ends, including TensorFlow, CNTK and Theano.

TensorFlow is a lower level mathematical
library for building deep neural network
architectures. The keras R package makes it
easy to use Keras and TensorFlow in R.

Working with keras models

RStudio® is a trademark of RStudio, Inc. • CC BY SA RStudio • info@rstudio.com • 844-448-1212 • rstudio.com • Learn more at keras.rstudio.com • keras 2.1.2 • Updated: 2017-12

• Optimiser
• Loss
• Metrics

• Model
• Sequential

model
• Multi-GPU

model

Define Compile
• Batch size
• Epochs
• Validation

split

Fit

• Evaluate
• Plot

Evaluate

• classes
• probability

Predict The keras R package uses the Python keras library.
You can install all the prerequisites directly from R.

library(keras)
install_keras()

This installs the required libraries in an Anaconda
environment or virtual environment 'r-tensorflow'.

INSTALLATION

input layer: use MNIST images
mnist <- dataset_mnist()
x_train <- mnist$train$x; y_train <- mnist$train$y
x_test <- mnist$test$x; y_test <- mnist$test$y

reshape and rescale
x_train <- array_reshape(x_train, c(nrow(x_train), 784))
x_test <- array_reshape(x_test, c(nrow(x_test), 784))
x_train <- x_train / 255; x_test <- x_test / 255

y_train <- to_categorical(y_train, 10)
y_test <- to_categorical(y_test, 10)

defining the model and layers
model <- keras_model_sequential()
model %>%
 layer_dense(units = 256, activation = 'relu',  
 input_shape = c(784)) %>%
 layer_dropout(rate = 0.4) %>%
 layer_dense(units = 128, activation = 'relu') %>%
 layer_dense(units = 10, activation = 'softmax’)

compile (define loss and optimizer)
model %>% compile(
 loss = 'categorical_crossentropy',
 optimizer = optimizer_rmsprop(),
 metrics = c('accuracy’)
)

train (fit)
model %>% fit(
 x_train, y_train,
 epochs = 30, batch_size = 128,
 validation_split = 0.2
)
model %>% evaluate(x_test, y_test)
model %>% predict_classes(x_test)

DEFINE A MODEL

keras_model() Keras Model

keras_model_sequential() Keras Model composed of
a linear stack of layers

multi_gpu_model() Replicates a model on different
GPUs

compile(object, optimizer, loss, metrics = NULL)
Configure a Keras model for training

COMPILE A MODEL

fit(object, x = NULL, y = NULL, batch_size = NULL,
epochs = 10, verbose = 1, callbacks = NULL, …)
Train a Keras model for a fixed number of epochs
(iterations)

fit_generator() Fits the model on data yielded batch-
by-batch by a generator

train_on_batch() test_on_batch() Single gradient
update or model evaluation over one batch of
samples

FIT A MODEL

evaluate(object, x = NULL, y = NULL, batch_size =
NULL) Evaluate a Keras model

evaluate_generator() Evaluates the model on a data
generator

EVALUATE A MODEL

OTHER MODEL OPERATIONS

summary() Print a summary of a Keras model

export_savedmodel() Export a saved model

get_layer() Retrieves a layer based on either its
name (unique) or index

pop_layer() Remove the last layer in a model

save_model_hdf5(); load_model_hdf5() Save/
Load models using HDF5 files

serialize_model(); unserialize_model()
Serialize a model to an R object

clone_model() Clone a model instance

freeze_weights(); unfreeze_weights()
Freeze and unfreeze weights

PREDICT

predict() Generate predictions from a Keras model

predict_proba() and predict_classes()
Generates probability or class probability predictions
for the input samples

predict_on_batch() Returns predictions for a single
batch of samples

predict_generator() Generates predictions for the
input samples from a data generator

layer_input() Input layer

layer_dense() Add a densely-
connected NN layer to an output

layer_activation() Apply an
activation function to an output

layer_dropout() Applies Dropout
to the input

layer_reshape() Reshapes an
output to a certain shape

layer_permute() Permute the
dimensions of an input according
to a given pattern

layer_repeat_vector() Repeats
the input n times

layer_lambda(object, f) Wraps
arbitrary expression as a layer

layer_activity_regularization()
Layer that applies an update to
the cost function based input
activity

layer_masking() Masks a
sequence by using a mask value to
skip timesteps

layer_flatten() Flattens an input

n

x f(x)

L2L1

https://keras.rstudio.com/reference/install_keras.html

CORE LAYERS

See ?install_keras
for GPU instructions

TRAINING AN IMAGE RECOGNIZER ON MNIST DATA

https://keras.rstudio.com

https://www.manning.com/books/deep-learning-with-r
The “Hello, World!”

of deep learning

Keras TensorFlow

https://keras.io/
https://creativecommons.org/licenses/by-sa/4.0/
mailto:info@rstudio.com
http://rstudio.com
https://keras.rstudio.com/
https://www.manning.com/books/deep-learning-with-r

More layers
CONVOLUTIONAL LAYERS

POOLING LAYERS

layer_conv_1d() 1D, e.g.
temporal convolution

layer_conv_2d_transpose()
Transposed 2D (deconvolution)

layer_conv_2d() 2D, e.g. spatial
convolution over images

layer_conv_3d_transpose()
Transposed 3D (deconvolution)
layer_conv_3d() 3D, e.g. spatial
convolution over volumes

layer_conv_lstm_2d()
Convolutional LSTM

layer_separable_conv_2d()
Depthwise separable 2D

layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
Upsampling layer

layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
Zero-padding layer

layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
Cropping layer

layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
Maximum pooling for 1D to 3D

layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
Average pooling for 1D to 3D

layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
Global maximum pooling

layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
Global average pooling

Preprocessing
SEQUENCE PREPROCESSING

pad_sequences()
Pads each sequence to the same length (length of
the longest sequence)

skipgrams()
Generates skipgram word pairs

make_sampling_table()
Generates word rank-based probabilistic sampling
table

TEXT PREPROCESSING

text_tokenizer() Text tokenization utility

fit_text_tokenizer() Update tokenizer internal
vocabulary

save_text_tokenizer(); load_text_tokenizer()
Save a text tokenizer to an external file

texts_to_sequences();
texts_to_sequences_generator()
Transforms each text in texts to sequence of integers

texts_to_matrix(); sequences_to_matrix()
Convert a list of sequences into a matrix

text_one_hot() One-hot encode text to word indices

text_hashing_trick()
Converts a text to a sequence of indexes in a fixed-
size hashing space

text_to_word_sequence()
Convert text to a sequence of words (or tokens)

IMAGE PREPROCESSING

image_load() Loads an image into PIL format.

flow_images_from_data()
flow_images_from_directory()
Generates batches of augmented/normalized data
from images and labels, or a directory

image_data_generator() Generate minibatches of
image data with real-time data augmentation.

fit_image_data_generator() Fit image data
generator internal statistics to some sample data

generator_next() Retrieve the next item

image_to_array(); image_array_resize() 
image_array_save() 3D array representation

ACTIVATION LAYERS

layer_activation(object, activation)
Apply an activation function to an output

layer_activation_leaky_relu()
Leaky version of a rectified linear unit

layer_activation_parametric_relu()
Parametric rectified linear unit

layer_activation_thresholded_relu()
Thresholded rectified linear unit

layer_activation_elu()
Exponential linear unit

α

DROPOUT LAYERS

layer_dropout()
Applies dropout to the input

layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
Spatial 1D to 3D version of dropout

LOCALLY CONNECTED LAYERS

layer_locally_connected_1d()
layer_locally_connected_2d()
Similar to convolution, but weights are not
shared, i.e. different filters for each patch

RECURRENT LAYERS

layer_simple_rnn()
Fully-connected RNN where the output
is to be fed back to input

layer_gru()
Gated recurrent unit - Cho et al

layer_cudnn_gru()
Fast GRU implementation backed
by CuDNN

layer_lstm()
Long-Short Term Memory unit -
Hochreiter 1997

layer_cudnn_lstm()
Fast LSTM implementation backed
by CuDNN

application_xception() 
xception_preprocess_input() 
Xception v1 model 

application_inception_v3() 
inception_v3_preprocess_input()
Inception v3 model, with weights pre-trained
on ImageNet

application_inception_resnet_v2() 
inception_resnet_v2_preprocess_input()
Inception-ResNet v2 model, with weights
trained on ImageNet

application_vgg16(); application_vgg19()
VGG16 and VGG19 models

application_resnet50() ResNet50 model

application_mobilenet() 
mobilenet_preprocess_input() 
mobilenet_decode_predictions() 
mobilenet_load_model_hdf5()
MobileNet model architecture

ImageNet is a large database of images with
labels, extensively used for deep learning

imagenet_preprocess_input()
imagenet_decode_predictions()
Preprocesses a tensor encoding a batch of
images for ImageNet, and decodes predictions

Keras applications are deep learning models
that are made available alongside pre-trained
weights. These models can be used for
prediction, feature extraction, and fine-tuning.

A callback is a set of functions to be applied at
given stages of the training procedure. You can
use callbacks to get a view on internal states
and statistics of the model during training.

callback_early_stopping() Stop training when
a monitored quantity has stopped improving
callback_learning_rate_scheduler() Learning
rate scheduler
callback_tensorboard() TensorBoard basic
visualizations

Pre-trained models

Callbacks

RStudio® is a trademark of RStudio, Inc. • CC BY SA RStudio • info@rstudio.com • 844-448-1212 • rstudio.com • Learn more at keras.rstudio.com • keras 2.1.2 • Updated: 2017-12

Keras TensorFlow

http://www.image-net.org/
https://creativecommons.org/licenses/by-sa/4.0/
mailto:info@rstudio.com
http://rstudio.com

